A Structural *Trans-Influence* Controlling the Position of Bridging Hydride Ligands: X-Ray Crystal **Structures of** $[\{Ru(pz)(pzH)(cod)\}_2(\mu-H)]$ **[PF₆] and** $\left[\frac{\text{Ra}_{2}(pz)_{2}(\text{Cl})(pzH)(\text{cod})_{2}(\mu\text{-H})\right]\cdot\text{C}_{2}H_{5}\text{OH}$ (cod = cycloocta-1,5-diene, pzH = pyrazole)

TERENCE V. ASHWORTH, DAVID C. LILES and ERIC *National Chemical Research Laboratory, Council for Scienti-*

*National Chemical Research Laboratory, Council for Scienti*fic and Industrial Research, Pretoria 0001, South Africa

Received November 9, 1984

We have recently described $[1]$ the X-ray structure of the complex $\left[\text{RuH(pz)(cod)}\right]_2 pzH$ (1; cod = cycloocta-1,5-diene, $pzH = pyrazole$ in which a hydride ligand was located in an unsymmetric bridging position. We postulated that the position of the bridging hydride was governed by the relative strengths of the structural *trans*-influence of the ligands coordinated trans to the $M-H-M$ bridge. From X-ray crystallographic studies on the compounds (2) and (3), which are structurally very similar to (1) , we are now in a position to provide experimental evidence for this proposal.

IfcodJ(pzHJRu(~-HJ(~-pzJ~R~fcodJl lIJ, l(codJ-IpzHJRu(~-HJ(Cc-pzJ,Ru(pzHJ(codJj + (2J, /(cod)- $(pzH)Ru(\mu-H)/\mu-pz)_{2}Ru(pzH)/\left(cod\right)$ $\frac{pzH}{R}u(\mu-H)(\mu-pz)_{2}RuCl(cod)]$ (3)

Compound (2) was synthesized $(60\% \text{ yield})$ by the reaction of $\text{[RuH(cod)(NH_2)Mee_2)_3} \text{[PF}_6]$ [2] with pyrazole $(2.1 \text{ molar equivalents})$ in acetone under reflux. Compound (3) formed quantitatively on allowing (1) to stand in $CH₂Cl₂$ over several hours at 20 °C. The NMR spectra of (2) and (3) indicated that the coordination geometry was symmetric in the former and unsymmetric in the latter (Table I). The structures of both compounds were established by three-dimensional X-ray diffraction techniques, see ** right hand column.

Discussion

The core geometries of complexes (1) – (3) are shown in Fig. 1; and the molecular structures of (2) and (3) , together with the atom numbering scheme, are depicted in Figs. 2 and 3, respectively. The bridg-

ing hydride resides closer to $Ru(1)$ in (1) , is symmetrically bridged (within experimental error) in (2) , and, resides closer to $Ru(2)$ in (3) . Thus, if the X-ray results are reliable, the position of the bridging hydride ligand is clearly influenced by changing a trans ligand from H^{$-$} to pzH to C Γ .

Because of the relatively large margin of error associated $[3, 4]$ with locating and refining hydrogen atom positions from data obtained by X-ray diffraction, other structural features which would lend support to the positions determined for the bridging hydrides were sought. It is well known [3] that hydride ligands exert a considerable structural transinfluence and it is therefore possible to examine the $Ru(1)$ -N(pyrazole) bond lengths, which are common to all three structures, to deduce indirectly any change in position of the bridging hydride ligand. In compound (1), where the hydride was located closer

 $\overline{}$. Crystal data (2): Crystal da

^{*}Author to whom correspondence should be addressed. *Author to whom correspondence should be addressed.

^{**}Crystal data (2): $C_{28}H_{39}F_6N_8PRu_2$, $M = 834.78$, monoclinic, space group $P2_1/n$, $a = 13.961(3)$, $b = 17.950(4)$, $c =$ 12.398(3) A, β = 91.66(2)°, U = 3105.6 A°, D_c = 1.785 Mgm $^{\circ}$ for Z = 4, $F(000)$ = 1680, MoK α radiation, λ 0.71069 A, μ (MoK α) = 0.977 mm⁻¹. (3): C₂₇H₄₁Cll ORu₂, $M = 703.26$, orthorhombic, space group $P2_12_12_1$, $a = 18.011(4)$, $b = 16$. $98(3)$, $c = 9.260(2)$ A, $U = 2835.0$ A^3 , $D_c = 1.647$ μ Mgm⁻³ for Z = 4, $F(000)$ = 1432, μ (MoK α) = 1.070 mm⁻¹. The structures were solved (by Patterson and difference electron density synthesis methods) and were refined using SHELX [8]. Anisotropic temperature factors were used for all non-H atoms; all H atom positions were *located and freely refined. The refinements converged with* $R = 0.0336$ and $R_w = 0.0322$ for (2) and $R = 0.0310$ and R_w = 0.0268 for (3) for 3489 (2), 1940 (3) reflections with $F_{\Omega} > 4\sigma(F_{\Omega})$ measured in the range $3 \le \theta \le 23^{\circ}$ at 293 K on a Philips PW1100 4-circle diffractometer (NPRL, CSIR) using crystals of dimensions $0.40 \times 0.30 \times 0.20$ mm grown from acetone-methanol solution (2) and $0.35 \times 0.30 \times 0.20$ mm grown from dichloromethane-ethanol solution (3). The atomic coordinates for these structures are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 11W, U.K. Any request should be accompanied by the full literature citation for this communication.

TABLE I. NMR Data.^a

Compound (2)	$\rm ^1H$	δ 11.25 (br, 2H, NH) 8.57 (d, 2H, CH) (pzH) 7.92 (d, 2H, CH) (pzH) 6.75 (t, 2H, CH) (pzH) 6.71 (d, 4H, CH) (pz) 6.06 (t, 2H, CH) (pz) 4.11 (br, 4H), 3.38 (br, 4H), (= CH of cod), 3.20–2.5 (16H, CH ₂ of cod), –21.68 (1H, RuH)
	13 C	146.5 (1C), 138.8 (2C), 133.8 (1C), 108.7 (1C), 108.4 (1C), (pz and pzH), 89.1, 86.2 $($ = CH of cod) 33.20, 30.4 ($=$ CH ₂ of cod)
Compound (3)	$\rm ^{1}H$	δ 8.33 (d, 1H, CH), ³ <i>J</i> (HH) 3 Hz) (pzH) 7.71 (d, 2H, CH) (pz) 7.53 (d, 1H, CH) (pzH) 6.60 (t, 1H, CH) (pzH) 6.41 (d, 2H, CH) (pz) 6.01 (t, 2H, CH) (pz) 4.15 (br, 2H), 3.75 (br, 2H) 3.3 (br, 4H) (= CH of cod), 3.1–1.8 (16H, CH ₂ of cod), -21.9 (1H, RuH)
	13 C	144.5 (1C), 138.4 (2C), 136.2 (2C), 131.8 (1C), 107.7 (1C), 106.6 (2C), (pz and pzH), 91.5, 85.6, 84.3, 82.6 (= CH of cod) 33.0, 32.9, 30.7, 30.0 (= CH ₂ of cod)

^aAbbreviations: d, doublet; t, triplet; ³ $J(HH) \approx 3 Hz$; br, broad.

to Ru(1), the trans-Ru(1)-N bond length $\{2.221(4)\}$ A} is significantly longer ${0.061(6)$ A} than the analogous bonds in (2) and (3) ; thus confirming the observed movement* of the hydride towards Ru(2) in (2) and (3) but with equal Ru(1)-H bond lengths in both complexes. The \mathbf{R} u \cdots Ru distance is shorter by ca. 0.05 Å in (2) and (3) compared with that in **(1)** which is also in keeping with the stronger interaction of the hydride with Ru(2).

The differences in the ${}^{1}\text{H}$ NMR chemical shift values of the bridging hydride in (1) , (2) and (3) provide additional support for the structural observations. Whereas in (1) the value is -7.82 ppm, in (2) and (3) the values are -21.68 and -21.90 ppm, respectively, indicating greater metal-metal interaction.

Conclusions

Bridging hydrides have been located $[5, 6]$ previously in unsymmetric positions and there is evidence indicating [5] that if the two metal centres are

Fig. 2. A perspective view of (2) showing the atom numbering scheme. Selected bond lengths (A) and angles $(°): Ru(1)\cdots Ru(2)$ 3.105(1), Ru(1)-H(1) 1.84(4), Ru(2)- $H(1)$ 1.75(4), $Ru(1) - N(11)$ 2.069(4), $Ru(1) - N(21)$ 2.082(4), $Ru(1)-N(31)$ 2.155(4), $Ru(2)-N(12)$ 2.080(4), $Ru(2)-N(22)$ 2.077(4), $Ru(2)-N(41)$ 2.164(4), $Ru(1)$ - $C(51)$ 2.212(5), Ru(1)-C(52) 2.203(5), Ru(1)-C(55) $2.200(t)$, $R_{12}(s)$, $R_{11}(t)$, $C(s)$, $R_{21}(s)$, $R_{12}(s)$, $R_{13}(t)$, $C(t)$, $R_{14}(t)$, $C(t)$, $R_{15}(t)$ $R_{\mu}(2)$, $C(62)$, $C(60)$, $R_{\mu}(6)$, $C(65)$, $C(65)$, $C(61)$, $D_{\mu}(6)$, $D_{\mu}(6)$ $Ru(2) - C(62)$ 2.208(5), $Ru(2) - C(65)$ 2.211(5), $Ru(2) - C(66)$ 2.209(5), $Ru(1) - N(11) - N(12)$ 115.1(3), $Ru(1) N(21) - N(22)$ 114.1(3), $Ru(2) - N(12) - N(11)$ 114.2(3), Ru(2)-N(22)-N(21) 115.1(3).

dissimilar, the hydride will be found closer to the more electron-deficient moiety. The structures of (2) and (3), together with that of **(l),** represent a unique series in that they provide the first opportunity to determine the location of bridging hydrides

^{*}Excluding the Ru-Hr.,, bond *tram* to pyrazole in (1) as this parameter was not freely refined, an average Ru-Ho, as this parameter was not freely refined, an average $Ru-H_{\text{br}}$ bond length *trans* to pyrazole of 1.81(5) A is obtained; thus the differences between this average bond length and the $Ru-H_{hr}$ bond length *trans* to H, 0.24(8) A and the $Ru-H_{br}$ bond length *trans* to Cl, $-0.21(7)$ A are significant with a probability greater than 0.99.

Fig. *3.* A perspective view of *(3)* showing the atom numbering scheme. Selected bond lengths (A) and angles $(°)$: $Ru(1)\cdots Ru(2)$ 3.112(1), $Ru(1)-H(1)$ 1.83(5), $Ru(2)-H(1)$ 1.60(5), Ru(1)-N(11) 2.084(6), Ru(1)-N(21) 2.091(7), $Ru(1)-N(31)$ 2.160(7), $Ru(2)-N(12)$ 2.080(6), $Ru(2)-$ N(22) 2.074(6), Ru(2)-Cl 2.442(2), Ru(l)-C(41) 2.195(8), $Ru(1)-C(42)$ 2.191(8), $Ru(1)-C(45)$ 2.200(10), $Ru(1) C(46)$ 2.184(9), $Ru(2) - C(51)$ 2.203(9), $Ru(2) - C(52)$ $(2.194(9) - 2.19(7))$, $C(55) - 2.16(9) - 2.16(7)$, $C(56) - 2.190(8)$ $R(x)$ -(5), $Ru(2)$ -C(55), $Ru(2)$ -C(56), $Ru(1)$ -N(21)-N(21)-N(21)-N(21)-N(22) $Ru(1)-N(11)-N(12)$ 114.8(5), $Ru(1)-N(21)-N(22)$
114.2(5), $Ru(2)-N(12)-N(11)$ 115.0(5), $Ru(2)-N(22)$ N(21) 116.0(5).

in three structurally similar compounds. Preliminary investigations [7] of the reactivity of the compounds have also shown that substitution of the ligands *frans* to the bridging hydride occurs readily, thus allowing the structural *from-influence on the* bridging hydride to be studied with an extensive range of ligands. These studies will be the subject of future publications.

References

- T. V. Ashworth, D. C. Liles and E. Singleton, Z. *Chem. Sot., Chem. Commun.,* (1984) in press.
- T. V. Ashworth, E. Singleton and J. J. Hough, Z. *Chem. Sot., Dalton Trans.,* 1809 (I 977).
- R. Bau, R. G. Teller, S. W. Kirtley and T. F. Koetzle, *Act. Chem. Res.,* 12, 176 (1979).
- D. S. Moore and S. D. Robinson, *Chem. Sot. Rev., 12, 415* (1983).
- M. Y. Darensbourg, J. L. Atwood, R. R. Burch, Jr., W. E. Hunter and N. Walker, J. *Am. Chem. Sot., 101, 2632* (1979).
- M. Y. Chiang, R. Bau, G. Minghetti, A. L. Bandini, G. Banditelli and T. F. Koetzle, *Inorg. Chem., 23,* 124 $(1984).$
- T. V. Ashworth and E. Singleton, unpublished results.
- G. M. Sheldrick, 'Computing in Crystallography', Delft University Press, Delft, 1978, p. 34.